Understanding the limitations of lithium ion batteries at high rates

نویسندگان

چکیده

Commercial lithium ion cells with different power: energy ratios were disassembled, to allow the electrochemical performance of their electrodes be evaluated. Tests on coin cell half included rate tests (continuous and pulsed), resistance measurements, extended pulse tests. Pulse power at high rates typically showed three limiting processes within a 10 s pulse; an instantaneous increase, solid state diffusion limited stage, then electrolyte depletion/saturation. On anodes, third process can also plating. Most rated for C continuous discharge, cathode charging voltage was around 4.2 V. For maximum charge current avoid negative 3–5 C. Negative anode voltages do not necessarily mean that plating has occurred. However, deposits observed all anodes after 5000 sequences pulses ± 20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity fade study of lithium-ion batteries cycled at high discharge rates

Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2C and 3C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3C) showed the largest i...

متن کامل

Transparent lithium-ion batteries.

Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional appr...

متن کامل

Origami lithium-ion batteries.

There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such t...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Membranes in Lithium Ion Batteries

Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Power Sources

سال: 2021

ISSN: ['1873-2755', '0378-7753']

DOI: https://doi.org/10.1016/j.jpowsour.2021.229690